If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6000=40w^2+40w^2
We move all terms to the left:
6000-(40w^2+40w^2)=0
We get rid of parentheses
-40w^2-40w^2+6000=0
We add all the numbers together, and all the variables
-80w^2+6000=0
a = -80; b = 0; c = +6000;
Δ = b2-4ac
Δ = 02-4·(-80)·6000
Δ = 1920000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1920000}=\sqrt{640000*3}=\sqrt{640000}*\sqrt{3}=800\sqrt{3}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-800\sqrt{3}}{2*-80}=\frac{0-800\sqrt{3}}{-160} =-\frac{800\sqrt{3}}{-160} =-\frac{5\sqrt{3}}{-1} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+800\sqrt{3}}{2*-80}=\frac{0+800\sqrt{3}}{-160} =\frac{800\sqrt{3}}{-160} =\frac{5\sqrt{3}}{-1} $
| q+16=1 | | 14x/11=x/22 | | 2.7b-30-2b+45=90 | | m/9=-1/9 | | 12x^2-20x+10=3x+5 | | -26=-2x+4-126=-14x-65=-3x+7 | | 1.5y+15-3y+15=180 | | 48-7m=14 | | 2^x+3+2^x+2=96 | | -19=2x+7 | | z^3=1,331 | | 3x=4=9/4x-5 | | 3x+32)=(5x-8) | | x-7/5=-10 | | 3x+2+4x=4+5x-10 | | 14+x/5=21 | | 5p+4=13p+14 | | 5a-5=10-a | | x-14=-97 | | 6.9x-2-3.2x-10=2.8 | | |2x−2|=17 | | Z=-6i-3 | | 2x-1-4=1-8(16x-2) | | 12x+8=10×1÷4x-6 | | q+5/5=5/6 | | 8k^2=72 | | 2^n=(1/8) | | 4(x+3.3=28 | | 7(5x-4)=13-8x | | 0.25x=2.5=6 | | 2x²+19x+35=0 | | 1/2x+3/4=20 |